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The timing of Western streamflow Is important to
water-resource management, even where it is
taken for granted.

DAILY STREAMFLOWS, WATER YEARS 1930 AND 2000
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Western streamflow timing is largely set by our
snowpacks, which hold most of the region’s water
supplies for weeks to months,
until showmelt begins.

In the Sierra Nevada:

* The average April 1 showpack contains
about 20 million acre-feet of water.

* The major foothill reservoirs (Shasta, etc) can
hold a total of about 20 million acre-feet.

» Reservoir storage set aside for flood control
reaches a total of about 5 million acre-feet.
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In California, this trend is widespread in the
Sierra Nevada, and has yielded flows that
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are about 2 weeks earlier now.

Timing of Center of Mass of Water-Year Full-Natural Flows
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As a consequence, the warm-season part
of annual streamflows has been declining.

April=July Flows as Fraction of Water—Year Total
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These streamflow-
timing trends reflect
large-scale changes in
snowpacks across
much of the West,
especially at middle
and lower elevations.

Snow is melting earlier over

much of the region. ,/,

.
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Linear trends (1950-97) in
April 1 snow-water content at
824 western snow courses

Philip Mote, 2003, GRL



Not surprisingly, these timing and snowpack
changes are attributable to long-term
winter-spring warming trends
across the West.

March-May
Temperature Trends
1950-1997
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These trends are corroborated by
corresponding changes in timing of spring
“green up” across the West.
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Snowmelt
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How much of the observed change is due
to natural, decades-long fluctuations

The primary
natural
candidate to
explain these
trends is the
multi-decadal
Pacific Decadal

Oscilllation,
which makes the
West warm in its “El

Nino-like” phase.

of the climate system?
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The recent reversal of PDO has NOT slowed the
progress of timing trends.

The average
streamflow
timing in the
years after the
1998 transition
to a “La Nina-
like” PDO state
have been even
earlier than
timings in the

preceding “El
Nino-like”
PDO epoch.
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Spring 2004 has been
particularly early!

Rivers across the West
began their snowmelt

10 to 30 days earlier than
usual.

FRACTION OF WESTERN RIVERS WITH
SPRING-PULSE DATES IN THE EARLIEST DECILE

(=]
=)

=
h

(=]
-

=
[¥%)

=
]

FRACTION OF RIVERS IN EARLIEST DECILE

(=]

0
1940 1950 1960 1970 1980 1990 2000

DEPARTURE OF 2004 SPRING PULSE DATE
FROM 1950-1999 AVERAGE

I I I I ] I I I I
DCristribution of the

numibz=rs of apring
pulaas that weara
aarier than 2004
during aprings
TRS0-HR

3 B

=
ol

NN

PFURCENTAGH OF WS

-
=

BANE B0 B0 v I AR

BS 20 35 30 35 a0 45

AL 35-c|” .
q ) @
i
o
30°M T T T I

125w 120 115%Y 1105 1059
— : | —

-30 -20 -10 0 +5

Days from normal

Spring 2004 was nearly record breaking in more

rivers than in any spring in the past 60+ years.




PROJECTED CHANGES IN ANNUAL TEMPERATURE, NORTHERN CALIFORNIA
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Even the coolest of these projected warmings will yield
significantly earlier snowmelt...

simulated Halt-Way Dates in Snowmelt

MERCED RIVER RESPONSES TO PCM+SIMULATED CLIMATES
(a) Rainfall as a Fraction of Total Precipitation
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By the middle of
the 21st Century,
even In one of
the coolest
scenarios, earlier
snowmelts &
major reductions
In snowpacks of
the Sierra
Nevada are
projected...

Knowles & Cayan,
: Clim. Change, 2004
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Changes in Freshwater Inflow to SF Bay, 2060 — 2000
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Changes in Freshwater Inflow to SF Bay, 2060 — 2000
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Trends toward earlier snowmelt runoff

are projected throughout the West,...
Projected streamfilow timings, 2080-99 vs 19571-80
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ESTIMATING
INFLUENCES OF o |
PROJECTED

WARMINGS ON
SNOW-SEASON AP

NUMBER OF DAYS/YEAR WITH MEAN TEMPERATURES
IN THE RANGE: -6C < Tavg < 0C
[from 1950-1999 VIC 1/8-degree INPUT DATA]
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model daily inputs, 1950-
1999 DAYS PER YEAR
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ESTIMATING INFLUENCES OF
PROJECTED WARMINGS ON
SNOW vs RAIN

FRACTION OF ANNUAL PRECIPITATION FALLING
IN THE DAILY TEMPERATURE RANGE: -6C < Tavg < 0C
[from 1950-1999 VIC 1/8-degree INPUT DATA]

Derived from UW'’s
VIC model daily inputs, "
1950-1999 FRACTION




Temperatures
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simulations, by Ruby Leung, PNNL. 2001
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...and high altitudes
may get even more of
the warming!

Temperature Changes

: Degrees G

NOTE: See Snyder et al (UCSC), 2002,
GRL, or various recent efforts by Miller
(UCB) and/or Kim (UCLA), for more
discussions of this effect.




FINDINGS

Rivers across the West are yielding earlier snowmelt
runoffs (by an average of about 9 days) in recent
decades.

Spring (and winter) warming trends have driven
these timing trends, and also have caused earlier
green-up of western plants.

Natural climate variations (e.g., PDO) have
contributed, but other forces are also at work.

Western rivers may be flowing 20 — 30 days earlier
by the end of the 21st Century, and California is
especially vulnerable (and thus may feel
the impacts even sooner).
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